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Abstract

The current status of computational methods for unsteady
aerodynamics and aeroelasticity is reviewed. The key features
of challenging aeroelastic applications are discussed in terms of
the flowfield state: low-angle high speed flows and high-angle
vortex-dominated flows. The critical role played by viscous
effects in determining aeroelastic stability for conditions of in-
cipient flow separation is stressed. The need for a variety of
flow modeling tools, from linear formulations to implementa-
tions of the Navier-Stokes equations, is emphasized. Estimates
of computer run times for flutter calculations using several com-
putational methods are given. Applications of these methods
for unsteady aerodynamic and transonic flutter calculations for
airfoils, wings and configurations are summarized. Finally, rec-
ommendations are made concerning future research directions.

1. Introduction

In the past decade there has been much activity in the de-
velopment of computational methods for the calculation of un-
steady aerodynamics about airfoils, wings and complete vehicle
configurations. Two key areas of activity have been transonic
aeroelasticity and lower speed, high-angle flight conditions. Ad-
vances have paralleled developments in steady Computational
Fluid Dynamics (CFD) with a lag of approximately five years
due to the additional requirement of time-accuracy. This pa-
per presents a discussion of current aeroelasticity problem areas
or challenges. The focus is primarily upon methods aimed at
the study of nonlinear fluid dynamic flows, typically referred to
as Computational Fluid Dynamics (CFD), although attention is
also given to linear flow models.

Figure 1 (Edwards [53]) illustrates significant features which
must be addressed in the use of computational aeroelasticity
for flutter boundary prediction. In this figure, a typical flut-
ter boundary curve, characterized by the flutter speed gradually
dropping to a minimum in the transonic speed range followed
by a rapid upward rise, is shown. The ability to predict this min-
imum, termed the transonic flutter dip, is of great importance in
design, since the flutter boundary must be shown by a combina-
tion of analysis and flight test to be outside the flight envelope
by a specified margin. For military aircraft, the margin in terms
of equivalent airspeed is at least 15 percent. Subsonic linear
unsteady aerodynamic theories have been reasonably success-
ful in predicting this flutter boundary for Mach numbers up to
0.6-0.7 but linear theory is unable to account for the effects of

aerodynamic shape and maneuvering condition upon unsteady
airloads. At high Mach numbers linear analysis has been used
with more or less success depending upon the severity of local
transonic effects. The occurrence of flutter within the flight en-
velope of an aircraft usually leads to structural failure and loss of
the vehicle, highlighting the necessity for careful validation of
computational methods intended for use in this area. In addition,
aircraft service life can be significantly degraded by unforeseen
dynamic loadings, such as buffet, and predictive capability for
such off-design point loadings must be well-understood before
being utilized in structural design. These key differences in the
utilization of steady and unsteady computational methods must
be clearly understood.

This field received an initial impetus in the mid-1970’s from
three sources: Tijdeman’s [152] experimental work on transonic
unsteady pressure measurements, Magnus and Yoshihara's [108]
demonstration of key transonic flow features for an airfoil with
an oscillating flap and the introduction of an economical tran-
sonic finite-difference solution algorithm (LTRAN2) by Ballhaus
and Goorjian [17). Ballhaus [16] gives a survey of the field from
this period. The AGARD Structures and Materials Panel Sub-
committee on Aeroelasticity has selected experimental unsteady
pressure data sets and defined two- and three-dimensional Stan-
dard Aecroelastic Configurations [30, 31] to provide reference
computational test cases for the development and validation of
improved computational methods.

Unsteady aerodynamics has been the theme of six recent
conferences [8-12, 153] whose proceedings contain a wealth of
information. Summary papers of the 1984 and 1985 AGARD
conferences are given by Mykytow [114] and Mabey and Cham-
bers [105]. The latter reference makes recommendations re-
garding computational and experimental methods for unsteady
flow phenomena and draws particular attention to the need to
pay careful attention to the nature of shock motions. The peri-
odic oscillations about circular arc airfoils are recommended as
benchmark computational cases for all time-dependent transonic
viscous flow theories. Zwaan [167] surveys aeroelastic problems
in transonic flow while Deiwert [46] reviews the numerical sim-
ulation of unsteady interactive flows. Reference [155] provides
a collection of articles going into extensive detail for unsteady
transonic aerodynamics. Mabey [106] gives a review of per-
tinent experimental research on time-dependent aerodynamics.
Finally, Dowell [48) provides an overview of nonlinear aeroe-
lasticity phenomena including structural as well as aerodynamic
nonlinearities.
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Figure 1 Graphical Representation of Minimum
Required Flutter Margin for Military Aircraft [7].

Research in these areas requires the comparison of exper-
imental and computational results with the goal of achieving
accurate predictive capability. Edwards {52, 54] provides sur-
veys of these efforts for the transonic flutter problem while
Mabey[107] discusses the physical phenomena associated with
unsteady transonic flow. Bobbitt’s {36] review of the issues in-
volved in obtaining accurate results from experiment and from
computation is particularly noted. Regarding higher angle, vor-
tex dominated flows, a trend of increasing interest by the aerody-
namics community in unsteady flows is also noted. This is due
to the inherent unsteadiness of such flows and to the ability of
emerging CFD methods to simulate their details. Newsome and
Kandil [117] discuss physical modeling issues involved in the
computational prediction of vortex dominated flows and survey
numerical results.

The remainder of this paper will review the current status of
computational methods for unsteady aerodynamics and aeroelas-
ticity. The key features of challenging aeroelastic applications
are discussed in terms of the flowfield state: low-angle high
speed flows and high-angle vortex-dominated flows. Next the
computational methods and the basic fluid dynamic equations
are introduced, followed by an assessment of the computer re-

sources required for the unsteady aerodynamic computations.
Then, the current state-of-the-art in CFD methods for transonic
flows and vortex-dominated flows are each discussed, with em-
phasis in the progress achieved during the past half decade. Fi-
nally, an assessment of current capabilities and future research
trends is offered.

2. Features of Low-Angle, High Speed Flows

The main features of steady transonic flow are described
first in order to organize the discussion. With increasing Mach
number and moderate angle-of-attack, the flow over the upper
surface of an airfoil becomes critical between My = 0.4-0.7
with the first shocks forming at approximately 0.1 higher Mach
number. Pearcy et al. [120] have classified several types of
flow separation which may occur. For conventional airfoils
the typical pattern involves the growth of a local separation
bubble, induced by boundary layer separation at the shock
foot, spreading rapidly to the trailing edge as Mach numbers
increases. This condition is often accompanied by unsteady
phenomena such as buffet and aileron buzz (Tijdeman [152]).
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Figure 2 Characteristics of Attached and Separated
Flow for Complete Aircraft (Edwards [53]).

The steep aft pressure gradients of modem airfoils can lead
to an alternate pattern in which separation progresses from the
trailing edge towards the shock. Tijdeman [152] notes that
the flow conditions in the region between the onset of trailing
edge separation and fully separated flow are very sensitive to
Reynolds number and the location of transition from laminar to
turbulent flow.

Figure 2 shows a diagram, from Edwards [53), of attached,
mixed and separated flow regions for a complete aircraft at
freestream Mach numbers between 0 and 2.0. In region I, the
flow is predominantly attached. To obtain optimum performance
and to avoid the drag penalty associated with flow separation,
design cruise conditions for aircraft typically are located here
near the boundary of region II.

As speed and/or angle of attack increase, a transition re-
gion of mixed flow (region II of fig. 2) is encountered. For
rigid structures, this region is typified by the onset of local-
ized regions of flow separation which may exhibit significant
aerodynamic unsteadiness. For realistic flexible structures, the
acroelastic response of the structure interacts with the airflow to
induce much more complicated situations. For instance, struc-
tural vibrations can cause the flow to alternately separate and
reattach at flow conditions where a rigid structure would support
attached flow. The associated high unsteady aerodynamic load-
ing can interact with the structure to cause unusual aeroelastic
phenomena which may restrict the vehicle flight envelope.

With further speed and/or angle of attack increases which
may be encountered under maneuvering conditions, fully sep-
arated flow conditions emerge (region III of fig. 2). Leading-
edge vortex flows and stalled wing flows are of this nature. At
still higher angles, vortex bursting in the vicinity of the aircraft
can cause severe buffeting. Within such regions the flow is
highly unsteady and accurate computations will require careful
attention to turbulence modeling. To emphasize the complexity
which the aeroelastic response adds, the flow within the three
regions of figure 2 will be referred to as Type I, II, and III
respectively.

While the predictive methods for attached flows are reason-
ably well developed, the picket fence in figure 2 emphasizes the
difficulty in predicting acroelastic phenomena in the mixed and
separated flow regions. It also symbolizes novel features that



are being encountered in transonic flutter testing. Modem high
performance aircraft are capable of maneuvering at transonic
speeds, leading to a much enlarged parameter space that must
be considered in flutter analysis and testing. Wing/store loading,
fuselage interference, angle-of-attack, Reynolds number, wing
shape, and wing sweep all must be considered, and the tradi-
tional flutter boundary parameterization of dynamic pressure at
flutter versus Mach number may need to be augmented to ad-
equately describe aeroelastic stability boundaries. For instance,
flutter tests give some indication that these additional param-
eters affect the detailed aeroelastic stability condition near the
flutter boundary. Thus, the pickets of the fence in figure 2 rep-
resent possible regions of low damping or instability that might
be encountered.

3. Features of High-Angle, Vortex—Dominated Flows

Unsteady airloads due to flow separation are involved in a
number of cases critical to the structural integrity of aircraft. As
speed increases for moderate angles of attack, typical of maneu-
vering flight near rimmed flight conditions, local transonic flow
effects are encountered which lead to separated flow over the
aft portions of lifting surfaces. Minimum flutter speed indices
are often encountered in this transonic region, in conjunction
with the onset of separated flow. The ability to predict these
minimums is obviously tied to the ability to treat such “local”
separated flows on wings.

For slightly lower speeds where more aggressive maneu-
vering is possible, unsteady airloads due to flow separation over
“remote” components (e.g. forebody and main wing panel) leads
to issues of tail buffeting and structural fatigue of aircraft com-
ponents. For these cases, as speed and/or angle of attack in-
crease, smooth air flow over lifting surfaces breaks down in a
variety of ways depending strongly upon the geometry. For
lower sweep angles and blunt leading edges, flow separation
may initiate near the trailing edge or near shocks and progress
to completely separated and stalled conditions. For higher sweep
angles and less blunt leading edges, leading edge flow separa-
tion bubbles foreshadow the development of leading edge vortex
flows. At higher angles, unsteady and burst vortex flow in the
vicinity of the wing and downstream lifting surfaces leads to
strong unsteady airloads and buffeting. Flow conditions near
the boundaries of these regions for the various flow phenomena
can be sensitive to a number of conditions and an understanding
of these effects is called for in order to avoid adverse aeroelastic
effects such as stall flutter, buzz, and structural buffeting.

4. Computational Aeroelasticity Challenges

With figure 2 providing a framework within which typical
flowfields encountered in aeroelasticity may be viewed, a num-
ber of current aeroelasticity problem areas are introduced in
Table I and figures 3-7. Table I serves as a guide for discussing
the current status in this area and the likely future trends. On
the left are listed the key Challenges, most of which have been
extensively commented on above. They are roughly graded in
terms of increasing difficulty from top to bottom with the more
difficult areas calling for more sophisticated flowfield modeling
in order to achieve useful accuracies. Arrayed against these
challenges are the Resource Issues impacting the economics of
aeroelastic analysis, which are listed on the right. The choice of
the appropriate level of CFD code to use, indeed the decision of
whether to use a linear or nonlinear flow method, is dictated by
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Figure 3 Features of Transonic Flutter (Edwards {53]).

the stage of design maturity, the required level of accuracy and
computer resources available. The process of identifying criti-

cal loading conditions requires running large numbers of cases,
almost always utilizing lower level methods. Critical cases, so
identified, are then candidates for further analysis with higher
level methods. It is interesting to query if this process can be
relied upon to capture the actual critical loading cases.

Figure 3, from Edwards [53], indicates further features
of high speed, low angle flutter. Dynamic pressure at flutter
tends to decrease with increasing Mach number to a minimum
“critical flutter point” value in the transonic speed range. At
subsonic speeds where the flow can be assumed to be attached
(Type 1 flow) at flutter, linear theory is reasonably accurate.
As speed increases into the transonic region, the situation is
complicated by the formation of shock waves and the onset
of flow separation (Type II flow) and linear theory must be
used with caution. The low damping region in the figure
indicates the potential for nonclassical aeroelastic response and
instabilities which may be encountered. Figures 4-6, illustrate
several types of novel aeroelastic responses which have been
encountered with the onset of Type II flows and which offer
challenges for computational methods. Figure 4 (Edwards [53])
shows a region of nonclassical aeroelastic response observed
on a high aspect ratio, flexible, supercritical wing (Seidel et al.
[141]) where high dynamic response at nearly constant Mach
number was encountered at dynamic pressures well below those
for which flutter was predicted with linear theory. The motion
is of the limit-amplitude type and the response is believed to
be associated with flow separation and reattachment driving the
wing motion in the first bending mode. Figure 5 (Edwards [53])
illustrates wing/store limited amplitude oscillations experienced
by modern, high performance aircraft under various loading
and maneuvering conditions at transonic Mach numbers. Such
oscillations can result in limitations on vehicle performance.
The conditions for which this type of response occurs appear
to also be near the onset of Type II mixed flow. The response
typically increases for maneuvering flight conditions. Dynamic
vortex-structure interactions causing wing oscillations have been
observed, figure 6 (Dobbs et al. [47]), on a bomber type aircraft
for high wing sweep conditions during wind-up turn maneuvers.
The flow involves the interaction of the wing vortex system
with the wing first bending mode and occurs over a wide Mach
number range at moderate angles of attack.



For lower speed flight where higher angles are achieved,
fully separated flows (Type I flows in fig. 2) are encountered
which can range from diffuse vortical flow structures to concen-
trated vortices designed to enhance stability and control. Inter-
action of such forebody and wing vortex systems with aft ve-
hicle components results in vortex-induced buffet loads. Figure
7 (Edwards [53]) shows typical operating conditions at which
such empennage buffet may be encountered. Buffet of horizon-
tal tails can occur at intermediate angles of attack and is a result
of the vortex system propagating downstream and encountering
the horizontal tail surface. As angle of attack increases, the
location of vortex bursting moves upstream in the wake. Loss
of lift is associated with the burst location reaching the vicinity
of the aircraft, and vertical surfaces located in such regions can
experience severe dynamic loads and structural fatigue.

These challenges, illustrated by figures 3-7, involve two
types of unsteady flows. The first is the Type II flow (fig.
2) wherein the onset of flow separation at high speeds leads
to critical flutter conditions and/or novel aeroelastic responses.
The second involves fully separated Type III vortex-dominated
flows at high angles. The search for the appropriate levels of
sophistication in fluid dynamic modeling to adequately model
these flows is the subject of this paper.
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Figure 6 Vortex-Induced Wing Oscillations of a Bomber-Type
Aircraft (Dobbs, Miller, and Stevenson [47]).

Table 1 COMPUTATIONAL AEROELASTICITY
CHALLENGES AND RESOURCE ISSUES

Challenges Resource Issues
Stability & Control Modeling Tradeoffs
divergence higher level CFD
roll performance improved configuration
wing rock detail

Gust Response Design Maturity

preliminary design
Flutter Boundary Prediction final design
l-g critical loading conditions

maneuvering
limit cycle oscillations
Computer Resources
Control Effectiveness required level of accuracy
buzz cost per solution
hinge moment number of solutions

Buffet Response
local: main wing panel
remote: tail buffet

30K

Altitude,
feet

| ! !
0 1

Mach nu_mber

Figure 5 Region of Potential Limited-Amplitude Oscillations
Due to Wing-Store Loading Effects (Edwards [53)).
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Figure 7 Regions of Vortex-Induced Buffet
Loads (Edwards [53]).




S. Computational Methods

A variety of fluid dynamic flow models is available to ad-
dress unsteady aerodynamic computations. The choice of an
appropriate method calls for assessment of the difficulty of the
aerodynamic problem being addressed. Type I flows (fig. 1) in-
clude one of the most important aeroelastic analysis conditions,
that of cruise at high dynamic pressure. Classical linear aeroe-
lastic analysis has been primarily focused upon this condition.
The transition from Type I to Type H conditions can occur due to
aircraft maneuvering, with little decrease in dynamic pressure.
Thus, aeroelastic response and stability of aircraft operating in
Type II flows can be quite important although they have only
begun to be brought within the range of computational methods.

Fluid dynamic flow models available for unsteady aerody-
namic computation include: the classical (linear) small distur-
bance potential equation, the nonlinear potential equation (both
Transonic Small Disturbance (TSD) and Full Potential equation
(FPE)), the Euler equations (EE) and the Navier-Stokes equa-
tions (both Full (FNS) and thin-layer (TLNS)).

Issues which have been central to unsteady CFD have been
the choice of implicit versus explicit algorithms, the stability
of alternative solution algorithms and the treatment of compu-
tational grids. Explicit schemes are simple to code and easily
vectorizable but are limited in allowable time step by the sta-
bility limit imposed by the signal propagation time over the
smallest grid cell. Faced with the requirement of maintaining
time-accuracy throughout the entire field for aeroelastic compu-
tations, this easily leads to excessive computation times, espe-
cially for viscous flow calculations where a very fine mesh near
the surface is required to resolve the boundary layer. The al-
ternative implicit solution algorithms thus are currently favored
for present-day computer architectures because of their relative
stability and time-step characteristics. While no attempt will be
made to present complete details of the various levels of flow
models, the following sections highlight the key equations and
relevant boundary conditions.

5.1 Navier-Stokes Equations

Anderson, Tannehill and Pletcher [2] provide a description
of the three-dimensional Full Navier-Stokes equations. For en-
gineering applications, the Reynolds-averaged form of the FNS
equations are normally used as a basis for practical computa-
tional procedures. In a cartesian coordinate system, the FNS
equations can be written as follows:

aJ lé] 17} 17}
= —(F=-F)+—(GC-G)+=—(H-H)=0(
Q)+ 7 (F = Fo) 4 (G = Gy + - (H = 11) =0 (1)
where the vector of independent, conserved variables is
Q = (p, pu, pr, p, €)" €))
and T
F = (pu, pu® + p, puv, puw, u(e + p)) 3
G = (pv, puv, pv’ + p, prw,v(e + p))T )]

H = (pw, puw, pvw, pw? + pywle + p))T 5)

are the inviscid flux vectors. The viscous flux vectors, Fy, Gy
and H, are given in Ref. [2].

To facilitate solutions of the FNS equations on body-fitted
computational grids, a curvilinear coordinate system is defined

and egs. (1) are converted using a generalized coordinate
transformation of the type:
€=£(xvyizat)1 7]=17(1,y,z,t), <=<(11y129t)7 T=t
(6)
into the following expressions:
d (4 8 (s - 9 (s A 9 (. -
E(Q) + &(F— Fu) + 5;(0— Gv) + &(H - H.,) =0
)]
where:
1 T
Q= j(PePuananv e) ®)
1
F = 5(pU, pUu + &, pUv + &yp, pUw + &:p, Ule + p) - &)’

&)

o
G = <(pV,pVu+1:p, pVv + yps pV w0 + 1ap, Ve +p) = up)’
(10)

H= %(pW, PWu + Cop, pW U + (o, pWw + Cop, W(e + p) — (p)T

an
Similar transformations are applied to the viscous flux vectors.
Note that the transformation is time-dependent, allowing the grid
to move to follow body motion and giving rise to grid motion
terms such as &, 7, and (; in eqs. (9) to (11). For viscous-
flow aerodynamic computations, the solid-surface boundaries
are modeled using the “no-slip” condition, together with adia-
batic wall and zero normal pressure gradient conditions.

A modified form of the FNS equations, termed the thin-
layer Navier-Stokes equations, has been found useful for ap-
plications where viscous effects in certain spatial directions are
small enough to be neglected. For many aerodynamic flows of
interest, the viscous terms normal to the body are of most im-
portance, and the other viscous fluxes can be dropped. If the
n—direction in eq. (7) is taken as the body normal direction, a
TLNS form of eq. (7) is given by the expression:

9 /A 0 /: 0/~ A -

(@) + -a—i(F) + a—q(G ~G,)+ a—c(ﬁ) =0

For turbulent-flow calculations, turbulence modeling such as
the algebraic eddy viscosity model of Baldwin and Lomax [15]
is used. Rumsey and Anderson [134] are typical of applications
using this thin-layer approximation to compute viscous-flow
solutions for airfoils. Also, Thomas et al. [150] describe a

three-dimensional implementation of the above equations in the
CFL3D code.

(12)

5.2 Euler Equations

For aerodynamic flows in which viscous effects are expected
to be negligible, the inviscid Euler equations can be derived
from eq. (7) by dropping all three of the viscous flux vectors
from the formulation. Then, F, = G, = H, = 0, and eq. (7)
reduces to:
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The boundary conditions_appropriate to the Euler equations
are the “slip” or “flow tangency” conditions. For these applica-
tions, only the velocity component normal to the body surface
is set to zero. The flow streamlines are assumed to run parallel
to the surface tangent at each point on the surface. Note that
for situations where there is rotational flow, such as the regions
behind strong or curved shock eaves, the Euler equations can
propagate the vorticity downstream in a correct manner if an
adequate number of grid points are used.

5.3 Full Potential Equation

The FPE is derived from the Euler eqixations by assuming
that the flow is inviscid, isentropic and irrotational. A velocity
potential can then be defined whose derivatives in the spatial
directions recover the flow velocity components in the appro-
priate directions. The governing equations for this formulation
are the continuity equation:

pr+ (p®:), + (p®y), + (p22), =0 (14)
and the isentropic energy equation:
b 1,2 2 2 2 "__l
p=1+— ;11&(1—2@,—@;—@;—@,) (15)

As with the Euler equations, a generalized coordinate system is
often used to solve the FPE and a flow-tangency boundary con-
dition is enforced at the body surface. Sankar and Malone [136]
describe such a FPE formulation in generalized coordinates.

5.4 Transonic Small Disturbance Potential Equation

The Transonic Small Disturbance Potential equation is de-
rived from the inviscid Euler equations assuming that the flow
is isentropic, irrotational and a small perturbation of a steady
uniform flow, U/, in the x direction. The TSD velocity potential
function, &, describes the perturbed velocity components u, v,

wi =@ ‘=% 96

p o= — 16
or’ v dy’ o ae

u = a"
where the total velocity in the x direction is U+u. Batina [20]
and Batina et al. [21] give the modified TSD potential equation
in conservation form as

0fo [ 0fi [ 0f2  Ofs

hELAFIRCES = = 17

ot dr Oy 0= 0 an
where

f0=_A¢l—B¢I h f2=¢y+[[¢t¢y
N1=Eé,+F&+G& fi=¢.
(18)

The coefficients A-H are given by Batina [20). The TSD

equation (17) is distinguished from the higher equation level
flow models in that, within the small disturbance assumption, the
computational grid is not required to move with the body since
boundary conditions are imposed at the mean plane, usually z
= 0%. The wing flow tangency boundary condition is

of = fF+ fi

where f* (x,y,t) = 0 describes the upper and lower body sur-
faces. The trailing wake boundary conditions are

[éz] = 0

(19)

[+ =0 : (20)

where [-] indicates that jump in the indicated quantity across the

wake. The pressure coefficient may be computed using either
linear or nonlinear forms of the Bernoulli equation. Batina et
al. [21] describe this algorithm as implemented in the CAP-TSD
code with a number of example calculations.

5.5 Viscous-Inviscid Interaction

Neither the potential equations nor the Euler equations de-
scribed above incorporate viscous effects which can be impor-
tant for high speeds and for lower speed at higher angles. It is
possible to account for unsteady viscous effects by coupling a
viscous boundary-layer model with an otherwise inviscid anal-
ysis. As commonly implemented, the inviscid outer flow solu-
tion provides the surface pressure distribution needed to solve
the boundary layer equations. This yields the boundary-layer
displacement thickness distribution which is used to modify the
airfoil surface tangency boundary condition for the next iteration
of the outer inviscid flow solution.

Guruswamy and Goorjian (65], Howlett and Bland [81],
and Rizzetta [129] describe this method implemented in two-
dimensional unsteady TSD codes. The effect of a viscous
boundary layer for attached turbulent flow is modeled in a quasi-
steady manner by means of the lag-entrainment equations of
Green et al. [64]. In this integral method the displacement
thickness 6" is computed as a function of the boundary-layer
momentum thickness 6 and the shape factor H as

5 =0.H Q@1
Given the velocity at the edge of the boundary layer (from the
outer inviscid flow solution), the boundary layer equations may
be integrated in a “direct” fashion to obtain §*. Coupling be-
tween the boundary-layer and the outer inviscid flow is through
the boundary conditions on the airfoil and wake, egs. (19) and
(20), which are modified to

E=LEHLAEOE 5 Bl=(60),)

For cases of incipiently separating and scparated flows the
boundary layer equations become singular, requiring a refor-
mulation of the equations in an “inverse” mode in which the
edge velocity gradient is computed for a given displacement
thickness (East et al. [49]). Consistency with the outer inviscid
flow may be obtained via a “semi-inverse” relaxation coupling
method (in which 6" is updated based upon the error between
inner and outer edge velocities) described by Carter [38] and
also used by Fenno et al. [58]. For cases with large amounts
of separated flow, particularly for unsteady flow, the semi-
inverse method itself encounters stability problems (Edwards
and Carter [50]). These cases have been more tractable via
the “quasi-simultaneous” coupling method introduced by Veld-
man [158] and by Houwink and Veldman [79] and the “semi-
implicit” coupling method of LeBalleur and Girodroux-Lavigne
[98]. Both of these methods perform the viscous-inviscid cou-
pling by developing, at each grid point, locally linear relations
between the inner and outer flow variables. This enables si-
multaneous solution for the coupling variables which is usually
accompanied by relaxation and iterations for convergence. The
quasi-simultaneous method has been implemented using the low
frequency LTRAN2-NLR TSD code and quasi-steady integral
boundary layer equations. The semi-implicit method described
in Ref. [98] achieves full time-consistency by coupling a time-
accurate TSD code with a time-accurate integral boundary layer
method.

(22)



5.6 Time-Linearized Transonic Small Disturbance Equation

A second formulation of the Transonic Small Disturbance
Potential equation is the time-linearized equation, which is de-
rived by assuming that the unsteady flowfield can be treated as a
small perturbation about the steady flow field solution. This the-
ory assumes that shockwaves are neither created nor destroyed
during the unsteady motion. The steady flow potential is ob-
tained from solutions to the steady-flow version of the TSD
equation:

(1= M2 — (v + 1)MZL 2S5, + 65y + 82, =0 (23)

The unsteady potential, ¢!, is then computed from the unsteady
TSD equation by solving the following equation:

~E MLl —2MEOL+{[1 - M2 - (v - DMEGR]0L), +4),+61, = 0

(29)
Note that the steady potential ¢°, is required in the above
equation. In practice, ¢ can be obtained from other theoretical
formulations or derived from experimental data. Hounjet [74]
is representative of this approach to unsteady transonic flow
modeling.

5.7 Computational Grid Effects

Grid generation for unsteady problems in which the body
boundary moves, such as for an oscillating control surface
or an aeroelastic deformation, raises new issues over those
involved in steady flows. At the TSD equation level, wherein
the boundary conditions are applied on a nonmoving, mean
surface plane, stationary Cartesian grids have been used. For
unsteady problems, care must be taken to ensure the fidelity
of signals propagated through the stretched grids which are
used. Seidel et al. [140] and Bland [34] give results for the
TSD equation. A key effect of grid stretching is to modify
the “dynamic impedance” of the mesh at internal grid points,
leading to “internal reflections” of waves which may return to
the vicinity of the modeled aircraft components and contaminate
unsteady solutions. It is shown that this issue is typically more
severe for exponentially stretched meshes, frequently used for
steady calculations, than for meshes with less severe stretching
in the near field. This effect is alleviated in three-dimensional
flows. Bland [35] provides guidelines for generating grids and
selecting time-step size for accurate unsteady computational
characteristics. Finally, this effect has not been observed or
documented for calculations utilizing the higher level Euler or
Navier-Stokes equations.

For flow modeling equations higher than the TSD equation,
the body-conforming grids used must be realigned with the mov-
ing body at each time step to maintain accuracy. Schemes for
accomplishing this have been studied as well as the necessity
of moving the grid at all. When body motions are small with
perturbations mainly normal to the surface, imposing *“‘transpira-
tion” boundary conditions on the mean surface location may be
an acceptable approximation (Sankar et al. [137]). Steger [147]
formulated the TLNS equations including terms accounting for
grid motion. Steger and Bailey [148] used simple shearing of the
grid coordinate normal to the surface to allow the grid to follow
aileron motions. Chyu and his coworkers [42, 43] used an inter-
polation scheme for defining grids at intermediate steps between
the extremes of motion for oscillating airfoils and for fixed outer
computational boundaries. Anderson et al. [3] present EE re-
sults for dynamically moving airfoils and wings in which the

entire mesh is rotated to follow rigid airfoil and wing motions.
For aeroelastic motions of flexible structures more general meth-
ods for dynamically moving the mesh are required. Guruswamy
[67], Ide and Shankar [84], and Nakamichi [115] describe meth-
ods wherein the curvilinear coordinate normal to the surface is
sheared based upon the instantaneous surface normal displace-
ment as computed by the time-marching aeroelastic equations.

The above methods have all been implemented using struc-
tured grid meshes in which computed variables for neighbor-
ing grid points are stored in adjacent computer memory cells.
Unstructured grids, which can be implemented with triangular
grid cells in two-dimensions and as tetrahedral cells in three-
dimensions, offer more flexibility in modeling complex geome-
tries. Batina has developed a method for moving such body
conforming meshes to maintain alignment during aeroelastic
motions for airfoils {24] and complete configurations [23]. A
network of springs is associated with the mesh in which the
edge of each mesh cell is represented by a spring whose stiff-
ness is related to the length of the edge. At each time step, the
new location of the body boundary obtained from the aeroelastic
equations of motion is used to solve for the new static equilib-
rium location of the nodes of the spring network. Robinson et al.
[130] modified this grid motion technique for structured grids
and give results of wing flutter calculations using an Euler code.
Rausch et al. [124] further refined the method, treating spatial
grid cell adaption (mesh enriching and coarsening procedures)
on unstructured meshes.

6. Computational Aeroelasticity Resource Assessment

In this section, estimates of computer resources necessary
to produce accurate, converged results are given. This is done
prior to the discussion of the detailed applications in the fol-
lowing sections in order to provide a framework within which
1o assess what has been accomplished and where further work
is necessary.

The measure which will be used for computational aeroe-
lasticity resource requirements is the Computer Processing Unit
(CPU) run time for a single steady or dynamic time-marching
calculation. Typically, a steady calculation is required to es-
tablish an initial flowfield for subsequent dynamic calculations.
Each dynamic calculation produces a time history of acroelas-
tic response from which stability or response measures, such as
modal frequency and damping, may be derived. The CPU run
time for a CFD calculation can be estimated from the relation

Tepu = NeyNojey NopT 25)

relating computer CPU run time, T, to the number of com-
putational steps, N,; the number of cycles of oscillation for a
given frequency, N.,; the number of steps per cycle (required

for accuracy or stability), N,y,; the number of grid points,
Ngps and the algorithm speed, 7.

The algorithm speed, 7, is a common measure of the speed
of an algorithm given in microseconds per grid point per time
step (usec/gp/st). Values used for this parameter herein assume
machine speeds typical of a Cray 2 class supercomputer: 250
million floating point operations per second. Lower values of
T are associated with less complex algorithms, such as explicit
methods, while more complex algorithms yield larger values.
However, the higher level algorithms (e. g. implicit, upwind-
biased, etc.) allow larger time steps and are generally favored



Table II

Single half-span wing; up to “locally separating” flow

COMPUTATIONAL RESOURCE ESTIMATES FOR HIGH SPEED, LOW ANGLE CONDITIONS

Tpu = NeyNy, /ey Nogpt
TSD TSD-VISC Euler TLNS
Algorithm speed, T 30 6.2 60 65
psec/gp/st
Number of steps
Steady state Ngt 1000 1000 1000 5000
Dynamic Ney 3-7 3-7 3-7 37
Nsvey 100-300 100-300 300 1000
Number of grid pts Ngp 200 K 400 K 240K 650 K
Run time, hrs Tepu
Steady 0.2 0.7 . 4.0 59*
Dynamic 0.05 0.2-1.4 3.6-8.4 35-82%

*Assumes uniform global time step; no zonal decomposition

for calculations requiring time-accuracy. For a TSD code,
values are in the range of 3—10 pusec/gp/st while Navier-Stokes
codes call for values ranging from 10-100 usec/gp/st. A value
of 65 will be used below for the Navier-Stokes code resource
estimates. This is representative of the speed for a three-
dimensional implicit, upwind-biased code.

Table II presents computational resource estimates for a sin-
gle steady or unsteady (aeroelastic) response calculation for a
high speed, low-angle problem. This implies that attached or
only mildly separated flows are to be treated. The estimates are
for a single half-span wing panel which is typically utilized when
symmetry may be assumed. The four classes of CFD codes
listed are: inviscid TSD, TSD with interacted boundary layer
model (TSD-VISC), Euler equations, and Thin-Layer Navier-
Stokes equations. The number of steps for steady and dynamic
response calculations are typical of those reported in the litera-
ture. The number of grid points have been selected based upon
published grid convergence studies: see Anderson and Batina
[4] for TSD and EE results and Vatsa and Wedan [157] for Eu-
ler and Navier-Stokes results. The second and fourth columns
giving estimates including viscous modeling are the most in-
teresting as this level of flow modeling is required in order to
achieve desired levels of improvement over well developed lin-
ear unsteady aerodynamic methods. The estimates range from
approximately one hour per case for the TSD-VISC capability
to over 50 hours for codes based on the TLNS equations. Treat-
ment of full-span configurations would double these estimates
and increased geometric complexity, such as additional lifting
panels and bodies which would be called for in complete con-
figuration modeling, would also increase these estimates. Each

additional component modeled (tail, fuselage, etc.) would cost
roughly the amounts given in the Table for the single wing. This
last cost factor is due to the nature of grid point densities used,
wherein the large majority of grid points are clustered near the
body surfaces with the grid density coarsening quickly away
from surfaces. It is noted that the TLNS estimate is likely to
be conservative in that a uniform global time step (limited by
small grid cells in boundary layers) is assumed. A number of
straightforward modeling changes could lead to more econom-
ical methods with no loss of accuracy.

Higher-angle vortex-dominated flows call for significantly
more complicated flow modeling: flow separation over the fore-
body/wing must be accurately predicted; vortex formation and
the convection of vorticity over significant distances without loss
of accuracy are involved. Perhaps the most difficult computa-
tional aeroelasticity challenge is vertical tail buffeting wherein
vortical flow from the region of the forebody/wing is convected
downstream, possibly encountering vortex bursting, and impacts
on the flexible tail structure. CFD computations of these features
are beginning to emerge and are reviewed below. Edwards [55,
56] assesses the computer resource requirements for such cal-
culations along the lines given above. The flowfield is assumed
decomposed into three regions: an inner viscous region adjacent
to bodies and lifting surfaces, a nearfield region encompassing
the vehicle and the vortical flow region above it and an outer
inviscid, irrotational region. Assuming these three regions to be
modeled using TLNS, Euler and potential equations respectively
leads to the following rough computer resource estimate for a
tail buffeting calculation:

fmﬂI

Vll"v;p/wl fg-m.r
ey fmin

7(196,000 Npog + U3,

Tepu = Ny N, + 50,000

(26)
The frequency bandwidth of interest is specified by fmin and
frmaz> Npog is the number of lifting surfaces and bodies wetted
by viscous flow, V;; is the volume of the nearfield vortical flow
region and N, is the number of grid points per spatial wave-
length assumed necessary for accurate vortical flow calculations.
The sample estimate given by Edwards indicates run times on
the order of 1000 hours for such a calculation. Use of an Euler
code for a similar calculation leads to reduced estimates on the
order of 100 hour run times. However, issues related to the
use of inviscid Euler codes for this type of calculation indicate
caution in their use [55].

7. Low-Angle, High-Speed Flow Applications

This section will discuss applications of CFD methods for
flows which arc generally at lower angles and high speeds.
First, the available experimental databases needed for valida-
tion of CFD codes are described. Then, recent applications of



CFD methods for unsteady transonic aerodynamic analysis are
presented, followed by a survey of aeroelastic applications for
flutter prediction. Finally, the status of complete aircraft con-
figuration modeling is illustrated through cited examples found
in the current literature.

7.1 Experimental Data Bases for CFD Code Validation

The AGARD Structures and Materials Panel Subcommittee
on Aeroelasticity has selected experimental unsteady pressure
data sets as Standard Configurations to provide reference com-
putational test cases for CFD code validation. Data from es-
sentially rigid models oscillating in selected degrees of freedom
is available for six airfoils (Bland [30]) and five wings (Bland
{31]). Reference [11] contains many comparisons with these
data sets. Edwards and Thomas [52] survey calculations for
these and other cases, providing tables of example applications.
Detailed comparisons of calculations with these experimental
data sets can be found in Angelini et al. [5), Houwink [77],
Bland and Seidel [32], and Howlett and Bland [81].

The major intended use of unsteady aerodynamic calcula-
tions is for prediction of aeroelastic response of aircraft and,
more specifically, flutter. There have been numerous published
calculations of two degree-of-freedom airfoil studies which are
devoid of experimental data comparisons since realistic 2-D
flutter models are very difficult to fabricate. On the other hand,
there are only a small number of published 3-D flutter cal-
culations which are compared with experimental results. An
important reason for this is the detail and effort required to per-
form a valid flutter analysis of a flutter model. Vibration mode
shapes and masses must be accurately calculated or measured
and surface coordinates measured.

In many instances, experimental flutter data obtained for
actual or proposed flight vehicles are considered proprietary

by individual private organizations, and consequently, are not
in the public domain. However, Yates [166] describes an
AGARD standard aeroelastic flutter model consisting of a 45
degree sweptback wing for which extensive flutter test results are
available. Also, NASA Langley Research Center has recently
begun a mulii-year experimental program to generate extensive
flutter and unsteady aerodynamic data suitable for aeroelastic
CFD code validation applications. This research activity, known
as the Benchmark Models program, is outlined in Bennett et
al. [27]. Rivera et al. [126] describe the first flutter and
unsteady pressure measurement model test completed as part
of this ambitious test program.

7.2 Unsteady Aerodynamic Applications

7.2.1 Linear Aerodynamic Methods. Although the major fo-
cus of this survey is on computational methods for nonlinear
unsteady flows, it is prudent to be aware of the capabilities
of linear methods for two reasons. First, economy of effort
demands that proof be offered that supposedly more accurate
methods do indeed make a difference. Secondly, new methods
should always be checked against older well calibrated methods
for conditions at which both should produce similar results, thus
protecting against inappropriate use of “higher-order” methods.

For subsonic lifting surfaces, the standard linear methods
are the doublet-lattice method (e.g. Rodden et al. [131] and
the kemal function method (e.g. Rowe and Cunningham [133]).

Recent developments of unsteady supersonic acrodynamic the-
ories have been the potential gradient method of Hounjet [76]
and the harmonic gradient method of Chen and Liu [40, 41].
These references contain numerous examples of aeroelastic ap-
plications.

These linear aerodynamic methods have been highly refined
and calibrated with aeroelastic model test data. Coupled with
powerful finite element structural dynamic analysis programs,
they are used at all stages of design. Two notable analysis codes,
NASTRAN and Elfini, are described by Johnson and Reymond
[89] and Petiau and Brun [121].

Liu et al. [104] describe extensions to an unsteady aero-
dynamics panel method to permit more accurate modeling of
wing/fuselage configurations for subsonic flow field conditions.

Improvements to the technique used to implement unsteady
boundary conditions on the body surfaces, the addition of an
embedded singularity to simulate the aft flow separation in the
body wake region, and the use of constant-pressure wing panels
(as opposed to doublet lattice panels) are discussed in the paper.
Results are presented for wing-tail, body-alone, and wing/body
configurations.

7.2.2 Nonlinear Aerodynamic Methods. Much effort has been
directed towards predicting unsteady transonic aerodynamic
flows using the transonic small disturbance equation. The
XTRAN3S TSD code has been extended to allow treatment
of wing-tail (Batina [18]) and wing-fuselage (Batina [19] and
Guruswamy and Goorjian [70]) configurations. Batina [20] has
adapted an approximate factorization (AF) solution algorithm
based upon the work of Shankar et al. {142] to the TSD poten-
tial equation. The AF algorithm is implemented in a computer
code termed CAP-TSD (Computational Aeroelasticity Program
- Transonic Small Disturbance) developed at NASA Langley
Research Center (Batina et al. [21]). The code permits the
aeroelastic analysis of complete aircraft through the modeling
of multiple lifting surfaces and bodies. Results are presented for
five configurations illustrating this capability. Steady and un-
steady pressures for the F-16C aircraft modeled by four lifting
surfaces and two bodies are presented and agreement with exper-
imental steady pressures is considered good. The grid used for

“these calculations contained 324,000 points. The calculations

required 0.88 CPU seconds per time step or 2.7 microseconds
per grid point per time step on the CDC VPS-32 computer.
Thirteen million words of memory was required. Pitt et al.
1123] give flutter analyses obtained with the XTRAN3S code
and the CAP-TSD code. Both codes were used for the wing-
alone analysis of the F-15 and F/A-18 aircraft. The latter code
was used to study canard/wing/tail and wing/launcher/tip missile
configurations. There is a general lack of unsteady experimen-
tal data for complex configurations with which to validate such
computations.

Rodman, Nixon and Huttsell [132] describe modifications to
the XTRAN3S code to permit the use of experimental steady-
flow pressure data in the unsteady flow solution of the TSD
equation. The TSD equation is split into a steady and an
unsteady component. Experimental surface pressure data are
used to define a “strained-coordinate™ system, which is then
used to solve the perturbation equation for the unsteady flowfield
potential. The method is limited to those situations in which
shockwaves are preserved throughout the unsteady motion. Test
cases are presented for both 2D and 3D configurations (NACA
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64A006, NLR 2302, airfoils and the F-5 wing).

Angelini, et al. [5] report on a large number of unsteady
transonic-flow computations performed using five different CFD
methods. The computational procedures include a 1) 2D TSD
code, 2) a 2D coupled TSD code/boundary-layer method for un-
separated turbulent flows, 3) a 2D coupled TSD/boundary-layer
code for unseparated and separated laminar and turbulent flows,
4) a 2D Euler code for inviscid flows, and 5) a 3D TSD code
for inviscid flows. Computed results are presented for several
AGARD standard airfoil configurations and a rectangular wing
model. Some comparisons are made with available experimen-
tal data.

Sotomayer, Sankar, and Malone [146] provide a comparison
of computed results for the F-5 wing using three different numer-
ical procedures. Results are presented for a transonic small dis-
turbance code (XTRAN3S), a full potential code (USIPWING),
and an Euler code (GTEUL-3D). Steady and unsteady-flow re-
sults are compared with experimental data for several Mach
numbers (M = .8, .9, .95, .99 and 1.35). Sotomayer and Bor-
land [145] describe an applicaton of the XTRAN3S code to
the prediction of unsteady wing airloads arising from oscillating
control surfaces. The boundary conditions used to simulate un-
steady control surface motions are outlined. Numerical results
for the F-5 wing with a deflected and oscillating trailing-edge
flap are presented for a range of transonic Mach numbers. Com-
parisons are also made with existing experimental data for this
wing.

A number of investigators have also used the FPE as a
basis for developing unsteady transonic flow solution proce-
dures. Isogai [86] describes a procedure to solve the quasi-linear
form using a finite difference procedure on a stretched Cartesian
mesh. A quasi-conservative form of Jameson’s rotated differ-
encing scheme is used to capture shock waves. Since the grid
used in this method is not boundary conforming, interpolation
formulas are used to project values of the surface boundary
conditions to appropriate computational grid points near the ac-
tual body surface. A semi-implicit solution procedure is used
to advance the resulting equations in time. Computed results
and experimental data are presented for the ONERA M6 wing
(steady flow) and the NORA wing (steady and unsteady flow).

Sankar and Malone [136] describe two different procedures
(SUNTANS and USIPWING) used to solve 2D and 3D prob-
lems, respectively. These methods differ in the manner in which
surface motion is prescribed. In the SUNTANS code [109] the
computational grid deforms with time to permit an exact imple-
mentation of numerical boundary conditions at the instantaneous
airfoil surface. In the USIPWING code [135], a surface tran-
spiration technique is used to simulate small unsteady motions
of the wing surface. Reference [136] presents 2D and 3D com-
puted results compared to experimental data for a number of
airfoil and wing geometries.

Additional 2D FPE methods are presented by Schippers
[138] and Whitlow [163]. Schippers describes the mathematical
formulation and numerical implementation found in the NLR
TULIPS code. The TULIPS code solves the 2D full-potential
equation in strong-conservation form. The FPE is solved on
a body-fitted grid, using a second order time-integration pro-
cedure, together with flux-splitting techniques. The resulting
finite-difference equations are integrated in time using the im-
plicit method of fractional-steps. The algorithm is demonstrated

for unsteady transonic flows about the NACA 64A010 airfoil
and an airfoil of the ONERA M6 wing. Whitlow describes
modifications to a 2D Full Potential equation solution procedure
which simulate nonisentropic flow effects arising from strong
transonic shockwaves. A nonisentropic formulation is used to
modify the density upwind biasing incorporated in the original
FPE code. Calculated results are presented for several airfoil
shapes. .

The important effects of control surface effectiveness and
hinge moments are studied in Bharadvaj {29] and Ominsky and
Ide [119]. Both studies involve full potential equation codes and
the former includes the effect of 2 2-D quasi-steady boundary
layer model to calculate pressures due to oscillatory control
surfaces on a high aspect-ratio supercritical wing. The latter
reference studies multiple surface control of a free-to-roll model
for simultaneous flutter suppression and roll control.

Damodaran [45], Whitfield et al. [162), Chaderjian and
Guruswamy [39], and Nakamichi [115] provide four exam-
ples of the use of structured-grid Euler/Navier-Stokes solvers
for unsteady aerodynamic applications. Damodaran describes
an application of Jameson’s explicit Runge-Kutta time-stepping
scheme to the solution of the 2D Euler equations for unsteady
transonic flows about oscillating airfoil configurations. Nonre-
flecting far-field boundary conditions are used to help reduce
non-physical wave reflections at the outer boundary of the com-
putational grid. Numerical results are presented for the NACA
64A010 and the NACA 0012 airfoils. Additional calculations
are presented for an airfoil experiencing axial oscillations (simu-
lating a helicopter-rotor environment) and for the transient aero-
dynamic response of an airfoil due to angle of attack change.
For the latter case, comparisons are made with classical lin-
ear aerodynamic theory. In Ref. [162], the authors describe
a solution procedure for the 3D Euler equations in transonic
flow. Dynamic multi-blocked grids are used to model complex
aircraft configurations. The Euler equations are cast in strong
conservative form and solved using an implicit, approximately
factored scheme. Computational results are presented for a
wing with store and a wing/counter-rotating prop-fan configura-
tion. Limited comparisons with experimental data are provided
for the wing/store configuration. Reference {39] describes a
computational procedure for the thin-layer Navier-Stokes equa-
tions. The method can be used to model complex configu-
rations via the multi-block technique for grid-generation. An
implicit approximate-factorization diagonal algorithm is used to
integrate the fluid dynamics equations. The method is con-
sidered first-order accurate in time. Computational results are
presented for a low-aspect-ratio rectangular wing. Both steady-
flow and unsteady-flow calculations are compared, and one case
is presented for which the wing grid is split into an inner and
an outer region in order to demonstrate the time accuracy of
the method. Finally, Nakamichi presents comparisons of TLNS
code results for the NORA wing, one of the AGARD Standard
Configurations. A moving grid capability is employed, allow-
ing the computational grid to follow the harmonically pitching
wing motion.

Batina [23] has developed an Euler code based upon an
unstructured grid with very general configuration modeling ca-
pability. Results are given for a supersonic fighter configura-

tion with canard/fuselage/cranked delta-wing/tail/flow-through
nacelle components modeled. Calculations are given for the
complete vehicle oscillating in an aeroelastic mode and utiliz-
ing the moving mesh technique described above. Such unstruc-



tured grid methods involve more complex programming than
structured grid methods. Efficiency can be regained by algo-
rithm improvements such as the temporal-adaptive algorithm
described by Kleb et al. [93] which may relax the stringent
requirement of using a global time-step dictated by the size of
the smallest grid cells. See also Angelini and Soize [6] for
a two-dimensional small perturbation treatment of body-fitted
unstructured grids for unsteady calculations.

Mortchelewitcz and Sens [111] also describe a solution pro-
cedure for the 3D Euler equations using unstructured grids. An
explicit-implicit two phase integration scheme is used to solve
the discretized equations on a mesh of tetrahedral cells. Surface
transpiration is used to simulate motion of the solid surfaces for
unsteady computations. Sample computations are presented for
a wing-body configuration and compared to experimental data.
The experimentally measured wing deformation is included in
the computational mesh to account for static aeroelastic effects.

7.2.3 Hybrid Aerodynamic Methods. A number of hybrid com-
putational schemes have been developed which combine features
of different acrodynamic theories. Liu and Kuo [102, 103] de-
scribe a Transonic Equivalent Strip (TES) method for computing
unsteady transonic flow about three-dimensional wing configu-
rations. The method uses 2D steady-flow pressure distributions
to determine an “equivalent” airfoil shape obtained by an auto-
mated airfoil design procedure. This insures that the mean-flow
transonic effects are matched closely. Then the equivalent shape
is used to compute 2D unsteady transonic-flow using a nonlin-
ear method, such as the LTRAN2 TSD code. Finally, the 2D
unsteady transonic airloads are applied at each span station of
the wing, using phase-lag modifications obtained from a 3D
linear wave theory. Computed unsteady pressure distributions
are given for several wing configurations, including wings with
oscillating control surfaces.

Hounjet [74] describes a hybrid field-panel/finite-difference
procedure (FTRAN3) which combines features of both linear
and nonlinear methods. The field panel procedure is used to
compute a proper radiating boundary condition on the outer
boundary of the grid used for the finite-difference method. This
permits the grid extent to be reduced in size, resulting in a
decrease in computational effort overall. Hounjet implements
a multigrid technique to further improve convergence of the
finite-difference method.

Voss [160] describes other hybrid schemes. An unsteady
field panel method (PTRANS3) for solving the time linearized 3D
Transonic Small Disturbance equation is described. The wing
and wake surfaces are modeled with unsteady dipole distribu-
tions, while the region near the wing surface, where compress-
ibility effects are greatest, is modeled using volume sources.
Voss also describes a combined field-panel/finite-difference pro-
cedure.

Zimmerman and Vogel [169] describe a time-linearized
method for solving the transonic small perturbation equation
(LIN TSP). Comparisons are made for the unsteady transonic
airloads computed using several different methods, including
LIN TSP, TSP and doublet lattice. Some calculations are made
using both a steady and a quasi-steady boundary layer. The pa-
per also investigates the behavior of higher order harmonics of
the computed airloads, and concludes that for small amplitude
motions the higher-order harmonics can be neglected.
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Steiginga and Houwink [149] describe an engineering type
method (Q3D) which couples 2D linear theory, 2D nonlinear
theory and 3D linear theory, in order to predict unsteady tran-
sonic airloads on transport-type aircraft wings. In this method,
2D scaling matrices are first obtained by forming a ratio of un-
steady 2D nonlinear to 2D linear AICs, where each nonlinear
AIC is computed for a representative airfoil section of the 3D
wing. The resulting scaling matrices are used to modify 3D
AICs obtained from a doublet lattice analysis.

Finally, Reisenthal and Nixon [125] have supplemented
the TSD equation with a transport equation for streamwise
vorticity and a vector potential equation to predict vortex effects
over missile configurations. Results for a complete missile
configuration at subsonic, transonic, and supersonic speeds are
encouraging.

7.3 Aeroelastic Applications

A restricted selection of the many publications of 2-D-
potential flow flutter calculations includes Isogai [85], Edwards
et al. [51], Bland and Edwards [33], Berry et al. [28], and
Zimmerman [169]. References [33] and [51] document the
somewhat surprising “locally linear” nature of transonic poten-
tial flows. That is, about the steady mean flow condition which
is a nonlinear function of Mach number and angle-of-attack, un-
steady perturbation airloads behave very linearly for reasonable
airfoil motions. Reference [51] included the static twisting of the
airfoil due to the steady pitching moment into the flutter problem
and demonstrated a marked effect upon flutter boundaries, par-
ticularly for the supercritical MBB-A3 airfoil. Reference 28]
documented the utility of s-plane Pade curve fits of transonic air-
loads (which rely on the concepts of linearity and superposition)
for aeroelastic analysis. Viscous effects are shown to generally
result in larger values of flutter speed since transonic effects are
alleviated by the boundary layer. Zimmerman [170] describes
the application of several unsteady aerodynamic theories to the
prediction of transonic flutter instabilities for a 2D airfoil pro-
file. Flutter predictions are made using TSP theory, linearized
TSP, TSP with quasi-unsteady boundary-layer and doublet lat-
tice. Both frequency domain and time-marching methods are
used in these flutter predictions.

Wu et al. [164] describe the use of a compressible-flow,
ENS code for the prediction of unsteady airloads and flutter
of 2D airfoil sections. Unsteady flow results are shown for
harmonically oscillating NACA 0006 and NACA 0012 airfoils.
Time marching aeroelastic solutions are given for the NACA
0012 airfoil showing stall flutter for several different Mach
numbers and Reynolds numbers.

At the NLR, a number of unsteady acrodynamic computa-
tional procedures have been developed for use in transonic flut-
ter prediction (Hounjet [74] and Steiginga and Houwink [149]).
Zwann [168] describes an investigation into the accuracy of
several of these methods for predicting flutter of a transport-
type wing model. The methods examined include doublet lat-
tice with quasi-steady corrections, the Q3D quasi 3D method
and the FTRAN3 hybrid field-panel/finite-difference procedure.
Corrected doublet lattice results are shown to display a flutter
dip, probably due to the use of available experimental sectional
airloads data. The flutter dip computed is, however, uncon-
servative. The cormrelations of flutter speed versus Mach num-



12

ber reported for the Q3D code are slightly conservative, but in
good agreement with test results over a range of Mach numbers,
and up to a point where the flow begins to separate. Several
FTRANS3 predicted flutter points compared closely to the Q3D
results. Hounjet and Meijer [75] give additional applicatons of
the time linearized FTRAN3 code to flutter calculations for a
fighter configuration with stores.

Other time-linearized finite-difference methods for solving
the unsteady transonic flow about harmonically oscillating wings
are described by Weatherill and Ehlers [161] and Shieh, Schoen,
and Fung [143). In Reference [161] the transonic small distur-
bance equation is split into a steady and an unsteady flow com-
ponent, and the unsteady portion is solved using an out-of-core
LU decomposition procedure (OPTRAN3). Sample flutter anal-
ysis results are presented for a flexible rectangular-wing. Refer-
ence {143] describes an implicit finite-difference procedure for
solving the 3D full-potential equation for small unsteady per-
turbations of the body surface. The potential function is split
into steady and unsteady components. The steady component
can be obtained from a number of sources, such as higher order
fluid dynamic equations (e.g. Euler, Navier-Stokes) or experi-
mental data. Corrections are applied for nonisentropic effects,
and the body motion is enforced using surface transpiration on
a static grid conforming to the mean position of the solid sur-
faces (ZUNAS code). Computed results are given for unsteady
oscillations of a NACA 0012 airfoil and for flutter boundaries
of a 3D transport-type wing.

Comparisons of calculated and experimental flutter bound-
aries for wings have been given by Guruswamy and Goorjian
[66], Isogai [87], Isogai and Suetsugu [88] and Myers et al.
(113]. Isogai [85] studied the supercritical wing of Farmer et
al. [57] using a nonconservative full potential code and an inter-
acted boundary layer model. The trend of the transonic flutter
dip is very nicely predicted although the dip occurs about 0.08
low in Mach number. The premature flutter dip and the subse-
quent premature rise of the calculated boundary at higher speeds
is of concern. Myers [113] also shows such a premature rise
in the boundary. Finally, Isogai [87] shows flutter comparisons
for a different supercritical transport wing which agree nicely
with the experimental flutter dip.

Cunningham et al. [44] describe TSD code flutter calcula-
tions for the AGARD Standard Aeroelastic flutter model con-
figuration [166]. This is a 45° sweptback wing with a taper
ratio of 0.66. Experimental and computed flutter boundaries are
given for Mach numbers from 0.338 to 1.14. For this 4 per-
cent thick wing, transonic effects are delayed to high subsonic
Mach numbers and linear theory results from both CAP-TSD
and a kernel function program are in very good agreement with
experiment up to M, = 0.98. Nonlinear CAP-TSD subsonic
flutter calculations agree better with experiment than the linear
theory, particularly for the change in slope of the flutter bound-
ary near M, = 0.95. Robinson et al. {130] have also performed
flutter calculations for this wing using an Euler code. The mov-
ing mesh scheme described above was modified for use with
a structured grid algorithm and the flutter boundary prediction
was in good agreement with the TSD code and experiment.

Borland and Nagaraja [37] describe extensions to the
XTRAN3S code to permit aerodynamic modeling of wing-
pylon-stores and wing-fuselage configurations as well as the
addition of supersonic analysis capability, non-reflecting bound-

ary conditions and a Fourier analysis option for unsteady surface
pressures. A number of applications of the code are presented
for steady- and unsteady-flow aerodynamics and static/dynamic
aeroelastic solutions. The configurations studied included an A-
6 fighter configuration with stores, and a transport wing/fuselage
configuration with winglet.

Mulak, Meurzec and Angelini [112} describe a finite-
difference procedure to solve the 3D unsteady transonic small
disturbance equation. The method solves a discretized form of
the equation using an ADI splitting technique. Unsteady gener-
alized airforces are computed for a number of normal modes for
a swept, high-aspect-ratio transport-type wing. Some compar-
isons are made for steady and unsteady surface pressures and
test data at a transonic Mach number. Flutter calculations are
performed using different wing twist distributions correspond-
ing to jig and flight condition shapes. A comparison is also
presented for flutter calculations using both the doublet lattice
and the TSD method.

Wong and Lee [165] describe a numerical procedure to com-
pute unsteady transonic flow about 3D isolated-wing configura-
tions (UST3D code). The procedure solves the transonic small
disturbance equation, split into a nonlinear steady component,
and a linear unsteady component. The steady part of the equa-
tion is solved with an implicit Newton-iteration scheme, used in
conjunction with a preconditioned gradient type procedure. The
unsteady part is solved with a semi-implicit technique which is
explicit in the stream direction and implicit in the cross-flow
planes. A nonreflecting far-field boundary condition is applied
at the outer boundaries of the Cartesian mesh. Computed results
are given for a fighter wing. Real and imaginary components
of lifting pressure are given for a Mach number of 0.9 and k =
0.45. Aeroelastic results are compared with doublet lattice com-
putations for unsteady pressures and a sample futter calculation
is presented.

Five additional applications of TSD codes to wing flutter
calculations are described in Ref. [13], Bennett and Batina [26],
Gibbons et al. [62], Silva and Bennett [144], and Guruswamy
and Goorjian [69]. Reference [13] describes an implicit finite-
difference procedure (ATRANS code) for solving the 3D tran-
sonic small disturbance equations on a Cartesian mesh. Aeroe-
lastic calculations are made for the Falcon 900 wing at tran-
sonic Mach numbers, both with and without the incorporation
of static acroclastic deformations. Comparisons are also made
with a doublet lattice method at a subsonic Mach number of 0.8.
Bennett and Batina [26] present flutter calculations for a three
percent thick clipped tip delta wing with a leading edge sweep
angle of 50.5 degrees. The Mach range covered was 0.6-0.9.
At the lower Mach numbers the results were in excellent agree-
ment with linear theory, while there was a 6 percent reduction
in flutter speed from linear theory at Mo, = 0.907, bringing the
results into better agreement with experiment. Gibbons studied
2 70 degree swept delta wing for Mach numbers ranging from
0.6 to 3.0. The calculated flutter speeds are in very good agree-
ment with experiment at transonic speeds. At supersonic speeds,
the trend of the flutter boundary with Mach number agrees well
with experiment. Silva and Bennett [144] show transonic flutter
boundary predictions for a complex wind tunnel model. The
blended wing-fuselage and tip ballast store were modeled. Sig-
nificant improvement in predicted flutter points over those cal-
culated with linear theory are shown for high transonic Mach



number experimental points. Finally, Guruswamy and Goorjian
[69] give flutter boundary calculations for a rectangular wing
which agree well with experiment including a low supersonic
condition.

Several investigators have studied airfoil and wing limit-
cycle-oscillations (LCO) using both CFD-based and empirically-
based computational methods. Bendiksen and Kousen [25] and
Kousen and Bendiksen [94, 95] studied nonlinear aeroelastic
dynamic response of an airfoil section using a CFD method
based on the Euler equations. The Euler procedure is a finite-
volume scheme solved using an explicit five-step Runge-Kutta
algorithm. A two-degree-of-freedom structural dynamics model
was solved iteratively along with the fluid dynamic equations
to predict the dynamic response of the airfoil section. Aeroe-
lastic stability was studied for NACA 0006 and NACA 64A010
airfoil sections over a range of Mach numbers. Limit cycle
oscillations were found to occur at transonic speeds as a bifur-
cation phenomenon. A divergence/flutter interaction [94] was
identified for which the airfoil dynamically approaches a static
equilibrium offset at non-zero angles-of-attack.

Kousen and Bendiksen [95] also examined the effects of
torsional spring free-play on the flutter response of 2D airfoil
sections restrained by a two-degree-of-freedom elastic system
(pitch and plunge). For the 2D case, the incorporation of free-
play in the torsional spring lowers the stability boundary for
conventional flutter. A bifurcation phenomenon is shown to ex-
ist above the maximum reduced velocity for flutter. Above these
values, a limit-cycle behavior is exhibited by the airfoil/spring
system. This 2D analysis method was applied to the flutter be-
havior of a well known typical section model of sweptback wing
bending and torsion modes. It is shown that the dual-mode in-
stability calculated for this model corresponds to a region, or
pocket, of limit-cycle behavior. Finally, the effects of reduced
airfoil thickness were examined and shown to be destabilizing,
leading to limit-cycle behavior at lower Mach numbers than for
a thicker airfoil section.

Meijer and Zwann [110] describe a semi-empirical compu-
tational method for the prediction of LCO occurring on fighter-
type aircraft (see figure 5). Steady-state experimental surface
pressure data are used to compute generalized airforces required
to solve the structural dynamic equations of motion for a ve-
hicle. The surface pressures are tabulated versus Mach num-
ber and steady angle-of-attack and utilized during the transient
response simulation in a quasi-steady fashion wherein the in-
stantaneous, induced angle of attack is used to reference the
pressures. Both rigid and elastic mode shapes are used in the
computations. Sample calculations of dynamic structural re-
sponses were made for two vehicle configurations, an isolated
wing and a wing-with-missile configuration. Limit-cycle oscil-
lations were found only for the clean-wing configuration, where
the computed frequency and mean angle-of-attack data com-
pared well with flight test results. For the flight conditions were
LCO was observed, single-degree-of-freedom predictions using
single mode shapes failed to show indications of LCO behavior.
The authors state that LCO may not be associated with single
degree-of-freedom systems, but rather with multiple-degree-of-
freedom systems where modal coupling takes place, in a manner
similar to the classical flutter mechanism,

The suppression of flutter instabilities by active controls has
been demonstrated using CFD methods by Ominsky and Ide
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[119] and Guruswamy [68]. Ominsky and Ide use a Full Po-
tential equation CFD method to evaluate aeroservoelastic con-
trol laws for flutter suppression. A test case for a swept wing
is created by first determining a flutter condition to be con-
trolled. A single trailing edge flap is deflected with time using
a simple open loop multi-parameter control law. The param-
eters of flap amplitude of oscillation frequency and phase lag
are studied to determine their effects on flutter response and
a second-order control law is used in a closed loop manner to
control the identified flutter instability. Guruswamy summarizes
efforts at NASA-Ames to develop CFD methods for aeroelastic
applications. Applications of the ATRAN3S code (TSD) and
the TNS code (Euler/Navier-Stokes) are given. These include
unsteady aerodynamic results, flutter analyses and flutter sup-
pression demonstrations. Some comparisons with experimental
data are given.

Schuster et al. [139] have developed a FNS code using
zonal grid generation techniques to enable aeroelastic analysis of
complete vehicles. Static aeroelastic calculations are presented
for a fighter aircraft at a high wing-loading transonic condition.
Calculated twisting of the aeroelastically tailored wing/fuselage
configuration compares favorably with experiment.

Obayashi and Guruswamy {118] describe applications of the
ENSAERO code to compute unsteady aerodynamics of a delta
wing in oscillatory and ramp motions. The ENSAERO code
is an Euler/Navier-Stokes method which includes a structural
dynamics model to account for wing flexibility. The method
solves the thin-layer Navier-Stokes equations and incorporates
an algebraic turbulence model. Comparisons of theory and ex-
perimental data are presented for a number of steady flow and
unsteady flow (pitching-oscillations) conditions. Computational
results are also presented for a delta-wing undergoing an un-
steady ramp motion (pitch). The computed results indicate a
vortex breakdown condition occurring for a ramp motion which
reaches a maximum amplitude of 10 degrees angle-of-attack.

Vinh et al. [159] present an interesting augmentation to the
aeroelastic response capability of such codes. In addition to the
structural dynamic equations of motion normally used for aeroe-
lastic analysis, two additional degrees of freedom modeling the
rigid aircraft short period mode were implemented along with
an automatic trimming capability. This allows the interaction
of the elastic modes upon vehicle stability and control to be
calculated in a straightforward manner.

7.4 Viscous-Inviscid Interaction Applications

The transonic aeroelastic stability illustrations shown in fig-
ures 3-5 all involve strong viscous effects which inviscid analy-
ses cannot predict. In order to achieve desired improved accu-
racy in predictive methods for such cases, an accounting of the
effect of the viscous boundary layer is mandatory. Flows which
must be treated include those with thickening boundary layers,
incipient separation, shock-induced and trailing-edge separation,
and alternately separating and reattaching flows. The computa-
tional resource estimates given in Table II indicate the severe
cost incurred by going to higher level CFD flow models and
lead to the desirability of achieving the maximum possible vis-
cous flow analysis capability with lower level CFD methods
coupled with interacted viscous boundary layer models. Due to
the importance of this issue for acroelastic analysis, this sec-
tion focuses on such applications. Interacted boundary layer
methods have been developed for unsteady applications using
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direct solution for attached flows and indirect solution for sep-
arated flows. Calculations using TSD, full potential, and Euler
equation codes have been extensively reported.

Examples of viscous flow effects for attached 2-D flows
(direct solution method) are given by Guruswamy and Goorjian
[65], Howlett [80, 81], and Houwink [77, 78]. All of these
references use an integral boundary layer model coupled to a
TSD inviscid method and calculations for the AGARD Stan-
dard Configurations are given (NACA 64A010, NACA 64A006,
MBB-A3, NLR 7301, and NACA 0012 airfoils). Pirzadeh and
Whitfield [122] report a 3-D direct viscous solution coupled
to the Euler equations and give results for the NACA 64A010
airfoil and the ONERA M6 wing.

Unsteady results using the quasi-simultaneous method cou-
pled to TSD solvers are reported by Houwink and Veldman [79]
for 2-D cases and by Henke et al. [71] for 3-D cases. Houwink
gives separated flow results for an oscillating supercritical airfoil
and for an airfoil with a deflected spoiler. Henke gives details
of a similar viscous coupling method implemented in a stripwise
fashion in a 3-D TSD code and including aeroelastic compu-
tations. Comparisons with measured unsteady pressure from
a modem transport wing model with a supercritical airfoil are
shown and flutter calculations using the interacted viscous-TSD
code are compared with doublet lattice calculations.

The most elaborate viscous interaction calculations of un-
steady separated 2-D flows have been published by LeBalleur
and his coworkers [98, 99]. An unsteady deflect integral bound-
ary layer model is coupled to a TSD solver using the alternating-
direction implicit solution method which enables an incorpora-
tion of the strong interaction of the viscous influence during the
final z-sweep. The semi-implicit solution procedure involves a
relaxation solution of a viscous influence function to force con-
vergence of the viscous and inviscid solutions at each time step.
Reference [99] gives unsteady shock-induced separation results
for an oscillating NACA 64A010 airfoil, self-induced shock os-
cillations for a circular arc airfoil, and a supercritical airfoil with
an oscillating spoiler. Giroudrouux-Lavigne and LeBalleur [63]
further explore the self-excited shock oscillations, giving exam-
ples for the RA16 SCI supercritical airfoil and the NACA 0012
airfoil. The shock oscillation conditions are shown to coincide
with experimentally observed buffet onset boundaries. It is in-
teresting to note similar calculations of buffet onset boundaries
reported by Hirose and Miwa {72]. Experimental buffet bound-
aries for the NACA 0012 and KORN 75-06-12 airfoils are
compared with calculations from a 2-D TNS code. As in the
above viscous-inviscid interaction results, self-excited oscillat-
ing shocks are observed for conditions in good agreement with
the experimental buffet boundaries.

In summary, viscous interaction methods are capable of
treating important transonic effects when coupled with lower
level CFD methods. Impressive results have been published
for 2-D flows. Similar capability for 3-D flows involving
shock-induced separating and reattaching flows remains a most
important research topic.

7.5 Complete Aircraft Configurations

This section will survey the most ambitious CFD modeling
of complete aircraft in order to indicate the levels of details and
the level of effort such studies involve. All of the cases cov-

ered are for steady conditions; thus they can serve as a baseline
for estimating resources which would be required for unsteady
analyses. It is not surprising that the most detailed aircraft ge-
ometry modeling has been applied for cases at low angles of
attack, near design conditions, where the flow is attached or
mildly separated. These conditions are most important in de-
sign and the codes can be expected to perform at their best due
to good flow quality (steady, attached, thin shear-layers, etc.).
Thus, indications of the accuracy of results here will help to as-
sess the readiness of the codes for the more demanding transonic
flutter and low-speed, high-angle buffet conditions. Table III
summarizes a number of CFD applications for such cases. All
of these studies used the TLNS equations and all implemented
simple turbulence models. All used convergence acceleration
devices (local time-stepping, multigrid, etc.) which yield accu-
rate results only for converged, steady flows. Except for Flores
and Chaderjian [59], all made use of assumed symmetry in the
flow to reduce by half the grid size (only one-half aircraft model
analyzed). Finally, the codes used in these studies were gener-
ally second-order accurate in space and first-order accurate in
time. Fujii and Obayashi [61] and Huband et al. [83] give
results for complete aircraft models at transonic speeds while
Thomas et al. [151] studies a detailed forebody/strake model
at low speed and high angle. The latter is included due to its
complex surface modeling. Vadyak and Schuster [156] give re-
sults for a sharp-edged generic fighter wing-body configuration
at high angles. Kwon and Sankar [97] and Rizk and Gee [128]

give results of buffet flowfield calculations about two high per-
formance fighter configurations at high angles. These last three
cases of high angle vortex-dominated flows will be discussed
in the next section.

Fujii and Obayashi [61] modeled the W-18 transport con-
figuration as a wing-fuselage and made calculations for three
angles-of-attack. The overall surface pressures compared fairly
well with experiment except in the outboard wing region where
elastic deformations were not accounted for. Their numerical
algorithm allowed the calculations with" 700K grid points to be
obtained in 5-6 cpu hours. Flores and Chaderjian’s [59] study
of the F-16A aircraft is one of the most ambitious applications
to date. They modeled the wing, fuselage, tail, inlet, inlet-
diverter, and the exhaust nozzle using 27 grid zones for the
half-airplane. The flow-through inlet was modeled including
power effects. Comparisons with experimental pressures indi-
cated that the wing leading-edge expansion was not adequately
resolved and the wing shock location was off by 12% chord.
Doubling the grid size to one million points allowed the cal-
culation of the full-span aircraft at five degrees sideslip angle.
This also doubled the runtime to 50 hours. With regard to buf-
fet calculations, it is interesting to note that the vertical tail tip
vortex for this condition dissipated within one tip chordlength
due to numerical dissipation (due of grid stretching downstream
of the tip). Huband et al. [83] studied the same F-16A (the inlet
is faired over) for a low supersonic Mach number. Their fine
grid solution (1,241K grid points) occupied 59 million words of
memory and required 40 hours of runtime. They obtained fa-
vorable agreement with experimental surface pressures but the
wing leading-edge suction peaks were not correctly predicted
due to lack of numerical resolution.
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Ref. ]l Configuration M a, deg. Re, 10° N« Np T, usec Tepus hrs "
i
Fujii®! | W-18 0.82 ‘ 2,4,6 1.67 3000+ ‘ 700K 9.5 56 |
I :
Flores®® | Fléa wiinlet 0.9 ‘ 6 45 ‘ 5000 I 500K 36+ 25 |
' ! !
Huband® |  F-16A wio inlet 1 1.2 i 6 ‘ 1275 | 40,000+ l 1241K 30+ 40 ;
! t '
Thomas!$! |  F/A-18 forcbody 0.3 30 0.74 WT | 300K ;
i & LEX 10.0 FLT 3
Vadjak!%6 | generic wing/body 0.3 10,21%, 1.25 i 1,200 101K g
2325 , :
l | |
Kwon’7 ! F-15 wing/body/inlet | 0.15 20+ g 224K ;
i ) :

Rizk!® i F-18 aircraft 0.243 30* l 11.0 4,100 i | 55

; !

*Unsteady vortex flows

TABLE IV — CFD CALCULATIONS FOR HIGHLY-SWEPT WINGS AT HIGH ANGLES OF ATTACK

Ref. Configuration A, deg. a, deg. Re, 106 | Mw Ngp.K N TuSEC | Tepy,hrs
Hitzel™ cropped delta, 65 10,20,24,28* 1.25 0.4 270, 540
s,.e 10-28,24*, 0.85
28*10 1.20
Hsud? delta, r 60 1220) 13 0 712 -700(1000) 52 7 (10)+
Hsu’d? double-delta, r 80-60 12(20) 1%0}60 0 955 700(1000) 52 10 (14)+
Hsu®? cropped, 80-40 12(20) 1.3 0 1021 700(1000) 52 10 (14)+
double-delta, ,
Hsu’? double-delta, r 80-60 6,12,15,20, 13 0 859 500(1000) 52 6 (12)+
25,30,35%, :
40*
Fujii"o double-delta, r 80-60 6,12,(30*,35* 1.3 0.3 850 1000(5000) 20 5 (25)+
'rhomaslso dCl[a, S 75 0-40, 0.95 0.3 545 400 40 2.5
20.5,40*
Krist?® delta, s 75 20.5 05 03 350(1000)
all delta, s 70 (20, 25, 30, 1.0 0.3 1-2000 3
Agary 35, 40)*
e-Euler code s-sharp leading-edge r-round leading-edge *.vortex burst/unsteady calculations +-estimated
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8. High-Angle Vortex-Dominated Flow Applications

Computational studies are beginning to delineate the re-
quired levels of effort to produce accurate computations for sep-
arated, vortex-dominated flows. In this section attention will be
given to a brief assessment of the state-of-the-art in computing
vortical flows using CFD methods, followed by a discussion of
recent research efforts in two specialized categories, wing rock
and vortex buffet.

8.1 Status of CFD Prediction Methods for Vortical Flows

Edwards {56] provides a detailed study of current research
and applications into the use of CFD methods for the predic-
tion of separated, vortical flows over airfoils, wings and bodies.
Table IV lists a selection of these applications relevant to com-
putational aeroelasticity at high angles. All except Hitzel [73]
represent applications of the TLNS equation, while Hitzel uti-
lizes the Euler equations. The major conclusions of this study
are repeated here for completeness.

Calculations of stable vortex-dominated flows about simpli-
fied highly swept wing geometries at low speeds are available.
Early Euler equation results gave encouragement to their use for
such flows, but recent detailed studies point to issues regarding
their accuracy and convergence for realistic geometries. The
thin-layer Navier-Stokes equations, both laminar and turbulent
are being used. The results capture key features of the flowfield
such as primary and secondary vortices and surface pressure
details. Indications that vortex breakdown is being simulated
have been published. However, all cases surveyed indicated the
need for further grid refinement in order to achieve quantitative
agreement with experiment. Currently, grid sizes of 250,000 to
108 grid points are being used for half airplane modeling lead-
ing to CPU runtimes of 2-25 hours. These grids are typical of
those developed for attached shear flows with the highest grid
density near the body. This leads to inadequate density in off-
the-body regions where concentrated vortices are located and
mesh enrichment methods are being developed to address this
problem. A fundamental problem is the lack of any turbulence
model designed for dynamic free shear layers.

Agrawal et al. [1] provide an interesting numerical study of
this issue of off-the-surface turbulence modeling. Calculations
for a sharp-edged delta wing from an Euler code, a laminar
TNS code and a turbulent TNS code show vortex bursting at
locations in general agreement with experiment. It is noted that
the solutions are based on meshes that are not usually considered

fine enough for resolving flowfields in primary vortex regions. -

8.2 Rolling Oscillations and Wing Rock

Several studies have been published of unsteady airloads on
rolling delta wings at high incidences. The dynamics of the

leading-edge vortices which form at such conditions are one
of the driving forces which can lead to wing-rock; a limited
amplitude rolling oscillation which limits aircraft performance.
Computations have been reported for low speed flows and for su-
personic flows simulated via a conical flow assumption. Nayfeh
et al. [116] use an unsteady vortex-lattice method to predict
low-speed experimental wing-rock conditions.

Kandil and his coauthors have studied unsteady vortex-
dominated flow about delta wings using the conical flow as-
sumption of supersonic flow. Reference [90] gives compress-
ible Navier-Stokes results for rolling oscillations while Ref. {91]
gives results for oscillating leading-edge flaps. Lee and Batina
[101], again making use of the conical flow assumption, couple
an unstructured grid Euler code with a wing rolling equation
of motion to make calculations of supersonic wing-rocking mo-
tions. In a later work, Lee and Batina [100] demonstrated that
this supersonic wing-rock phenomenon’can be controlled with
the use of oscillating, leading-edge flaps, activated by a simple
control-law. More recently, Kandil and Salman {92] used an
Euler conical flow solution procedure to study the control of
wing-rock using leading edge flaps, together with a nonlinear
control law.

8.3 Buffet Flowfield Calculations

Current and future military fighters are called upon to per-
form high angle maneuvers at elevated loading conditions and
are experiencing structural fatigue problems due to dynamic buf-
fet loads on aft components of the empennage, in particular the
vertical tail(s). This has led to a desire for improved prediction
methods for such flows, which emerging CFD methods might
be expected to fulfill. Key flow modeling issues involve: i) un-
steady flow separation for moderately swept, rounded leading-
edge wings, ii) grid densities necessary for accurate calculation
of vorticity convected over significant distances, iii) dynamic
turbulence modeling for free shear layers, iv) detailed modeling
necessary for accurate calculations of vortex instabilities, and v)
vortex flows about wings at high subsonic speeds.

Three cases of the computation of buffet flowfields are given
as the last three entries in Table III. All are for quite complex
configuration models of high performance fighter aircraft and it
has been noted above that this type of computation is the most
demanding for aeroelastic. applications. Vadyak and Schuster
[156] made calculations for a generic fighter configuration con-
sisting of a sharp-edged strake/wing/fuselage. Low speed wind
tunnel LDV flowfield data was available and crossflow velocity
comparisons for a = 21 deg. appear to be good. A bubble-type
reverse flow region, indicating breakdown, is observed at ap-
proximately x/L = 0.9. These comparisons for this high angle,
vortex flow case are very noteworthy, particularly due to the
complex geometry tested. However, the computational results,
obtained with a grid of 101,000 points, cannot be regarded as
converged.

Kwon and Sankar {97] give calculations for a half-span
wing/body/inlet model of the F-15 aircraft. The FNS equations
are solved using a hybrid time differencing scheme suitable
for implementation on virtual memory machines. On a grid
consisting of 224,000 points, calculations of unsteady, buffet-
like flowfields are given for M = 0.15 and o = 20°. The
unsteadiness is shown to consist primarily of a low frequency
of about 5 Hz. (full scale aircraft) and a high frequency
ranging from 29-34 Hz. The higher frequency content compares
favorably with low speed wind tunnel tests for the complete
aircraft (Triplett [154]) even with the relatively coarse grid used.

The final entry in Table III, that of Rizk and Gee [128],
gives results for a complex configuration model of the half-
span F-18 aircraft. An overset zonal grid scheme consisting
of ten grids was used to model the forebody, fuselage, LEX,



faired-over inlet, wing, deflected leading-edge flaps, vertical and
horizontal tails and an idealized boundary layer diverter vent.
TLNS results are given for My, = 0.243 and o = 30.3°. The
solution required about 8 million words of memory and took
about 55 hours of CPU time for 5,100 steps. Bursting of the
LEX vortex in the vicinity observed in flight tests is shown.
Unsteady loads on the vertical tail show a dominant frequency
of 15-20 Hz. Other higher frequencies are evident but are not
well resolved. Triplett [154] gives test results indicating that the
principal modal buffeting response frequencies of this aircraft
are 15 Hz. and 45 Hz. Earlier calculations [127] indicate
that finer meshes (e.g. about 2 million grid points) will be
needed to accurately predict such features as the location of
vortex bursting.

The buffeting response of launch vehicles is a critical issue
in their performance. Up to the present, wind tunnel studies
have largely been relied upon for the prediction of such airloads.
Azevedo [14] presents novel TLNS results of buffeting response
calculations for a hammerhead payload configuration.

In summary, ambitious applications of CFD to complicated
aircraft geometries are being performed. Available studies are
very encouraging in the overall agreement with experiment. Im-
portant areas are also being highlighted where additional grid
resolution is needed to achieve local accuracy in such impor-
tant features as suction peaks and shock locations. Computer
runtimes for these cases are in the range of 5-55 hours (half-
airplane). It is probable that accurate buffet calculations will
require capability such as this forebody and wing flows in or-
der to generate accurate “starting” conditions for the convecting
vortex flows. It is also probable that similar capability will be
required to calculate the buffeting response of the tail to the on-
coming buffet flow. Indeed, this is likely to be a more difficult
problem than the calculation of the “starting” wing flow due to
the turbulent nature of the local flow at the tail.

9. Discussion and Future Trends

The proceeding sections have surveyed a segment of the
large efforts that have been spent on computational unsteady
aerodynamics suitable for aeroelastic applications of fixed wing
aircraft. These efforts can be divided into five general cate-
gories: i) development and demonstration of unsteady aerody-
namic methods, ii) rigorous calibration and validation of these
unsteady methods, iii) development and demonstration of aeroe-
lastic analysis procedures, iv) rigorous calibration and validation
of these aeroelastic procedures, and v) application of the result-
ing aeroelastic methods in the design or modification of actual or
proposed flight vehicle configurations. Although nearly a decade
and a half has passed since the earliest pioneering demonstra-
tions of CFD applied to aeroelastic analyses, considerable efforts
are still needed to reach a state where the aircraft industry, as a
whole, accepts and routinely utilizes CFD for category v. activ-
ities. By far, the largest number of references cited herein fall
within category i., and to a lesser extent, category iii. Also, to
a large extent, the authorship of these cited references seems to
indicate that a large segment of this research is currently occur-
ring in universities and government sponsored research labora-

tories. Although there are some notable exceptions to this trend,
many more industrial applications of aeroelastic CFD methods
are needed and desirable. The following comments are offered
regarding the current status and future trends of computational
methods to meet the challenges listed in Table I and illustrated
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in figures 3-7:

1. Stability and control estimates, including aeroelastic effects,
are being treated with linear methods which are well suited
for design conditions well removed from flow separation
boundaries where viscous effects are important. Initial
demonstrations of the unified treatment of complete vehicle
dynamics (rigid body and aeroelastic) using CFD methods
are available.

2. Gust response analyses are currently conducted using linear
aerodynamic methods. While CFD codes capable of treating
complete configurations (necessary for gust response anal-
ysis) are available, there have been no reported attempts of
such calculations other than isolated vortex-airfoil interac-
tions.

3. A number of studies of flutter boundary calculations with
CFD codes have been cited. Many more cases are needed
in order to establish the required level of flow modeling de-
tail which will provide accurate and useful results. It is not
yet established for what conditions nonlinear flow modeling
results differ sufficiently from linear results to justify their
use. Also, the tradeoffs between the computational expense
of the various levels of flow modeling (e.g. TSD-viscous
vs. TLNS) and improved accuracy of results have not yet
been established. A few cases have shown significant im-
provement over linear theory for small, but critical, ranges
of transonic Mach numbers.

4. Prediction of these critical minimum transonic flutter speeds
and nonclassical aeroelastic response phenomena, such as
control surface buzz and aeroelastic limit cycle oscillations,
certainly will require, at the very least, reliable, robust
interacted boundary layer models capable of handling some
amount of flow separation and reattachment. This capability
is not yet mature for wings or more complete configuration
modeling. This is also the case for the important design
issues relating to aerodynamic control surfaces: control
effectiveness and control hinge moments.

5. Cases of tail buffeting and structural fatigue being encoun-

tered by operational aircraft have focused attention upon this
area. The achievements in the ability to compute vortex-
dominated flows are truly impressive and initial calculations
of buffet-like flows appear to contain elements (frequency
content, etc.) of realism. However, studies of the accuracy
and convergence of such calculations in terms of grid den-
sity, sensitivity to initial conditions, repeatability, etc. are
necessary. Two interesting questions regarding such flow-
field simulations are:

a. if the flowfield simulations are repeatable, can the flow
modeling contain adequate fluid dynamic modeling to
ensure accurate buffet flows calculations?

b. if the flowfield simulations are very sensitive to initial
conditions or are not repeatable, what measures are to
be used in establishing the required number of cases
and computational record lengths to ensure solution
convergence?
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Regarding future trends in computational aeroelasticity the fol-
lowing comments are offered:

L

Robust interactive boundary layer methods coupled with all
levels of inviscid codes will mature and be applied to acroe-
lastic stability and response calculations for high-speed, low
angle conditions. The resulting improved accuracy in key
areas such as transonic flutter prediction will be of great
value.

Studies will delineate conditions best suited for the use of
CFD methods. A hierarchy of the problem areas, keyed
to the complexity of the flow problem being studied (e.g.
Types I, I, or TII flows), will be established and will be
addressed by a suite of tools drawn from the alternative
levels of CFD flow modeling.

Unstructured and hybrid grid methods will mature, leading
to computations of quite detailed configuration complex-
ity. The increased expense of unstructured grid methods
(due to more complex coding) will be offset by the antic-
ipated payoffs of the approach: fewer grid points required
for comparable accuracy along with the complex geometry
modeling capability. Continued improvements in algorithm
efficiency will be seen for all gridding approaches; block-

structured, zonal and hybrid grid schemes will also be used
in the search for robust, economical and user-friendly ge-
ometry modeling capability.

Improvements in conventional computer architectures will
not achieve the orders of magnitude speedup needed to make
the most complex aeroelastic computations, such as tail buf-
feting, routine. Massively parallel processing architectures
may eventually provide relief, but not in the near future.

The need for experimental data bases specialized for the val-
idation of computational methods for interesting aeroelastic
flows is being addressed by NASA’s Benchmark Models
Program and the European Aeroelastic Models Program.
Tests directed at unsteady off-the-surface flow measure-
ments will continue to press the limits of instrumentation
technology.

A final comment relates to differing uses of computational
methods in the fields of aircraft performance analysis and
aeroelastic analysis. The former application may be broadly
typified as dealing with well-behaved, stable flows exempli-
fied by performance and design studies where steady CFD
methods are currently being utilized heavily. The latter
application typically must deal with flows on the edge of
flow breakdown (i.e. structural dynamic instabilities in the
presence of dynamic flows and flows transitioning between
states) where safety-of-flight is of paramount concern. At-
tention by the user-communities to the appropriately differ-
ent standards to be applied to the validation or calibration
of CFD methods in these two areas is required.

In conclusion, it is anticipated that unsteady CFD methods
will emerge to be routinely used for aeroelastically challenging
problems.
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